Wednesday, 17 December 2014

Is there anybody in there? (previously published as a newspaper feature in Norwegian)

Er det noen der inne?


Hvilke metoder finnes for å vurdere en pasients bevissthet etter hjerneskade?

Vi har alle innsikt i våre tanker, følelser, planer og minner. Når vi treffer andre, antar vi at de også har lignende opplevelser. Denne grunnleggende psykologiske innsikten (noen ganger kalt theory of mind) er noe som utvikles i toårsalderen hos de fleste av oss.

Å forsøke å forstå hva andre tenker på, er noe vi alle må gjøre kontinuerlig når vi omgås andre. Vi kan ikke observere hva de tenker direkte, så vi må tolke oss frem til det ut fra hvordan de oppfører seg. Psykologer er kanskje spesielt bevisste på denne prosessen, da de i terapisamtalen må forsøke å forstå klientens tankemønster, hva som motiverer dem, eller hvilke minner som plager dem.

Men hva gjør en dersom en har en pasient som ikke kan snakke, svare tydelig på tester eller bevege seg? Når hjernen blir skadet av ulykker eller sykdommer kan en få en endret bevissthetstilstand, slik at pasienten i mindre grad er klar over sine omgivelser og egne opplevelser. Slike skader kan samtidig føre til at pasienten ikke er i stand til å kommunisere med pårørende eller helsepersonell. Ofte er pasientens atferd vanskelig å tolke og kan variere over tid. Noen ganger kan det forekomme bevegelser, blunking, endring av pust og puls. Hvordan kan en si om dette er vilkårlig variasjon, eller om pasienten er bevisst og forsøker å kommunisere med oss?

I høst publiserte vi en åpent tilgjengelig artikkel på norsk i tidsskriftet Scandinavian Psychologist på dette emnet. Artikkelen gir en oversikt over ulike bevissthetstilstander og ulike tilnærminger til å skille mellom dem. Et gjennomgående spørsmål er om nye teknikker for hjerneavbildning kan brukes til å si noe om en pasients bevissthet.

I artikkelen skiller vi mellom fire ulike typer tilnærminger for å vurdere bevissthet hos pasienter som ikke kan kommunisere. Den første tilnærmingen er å bruke sjekklister for hvilke handlinger pasienten utfører. Da kan en be pasienten om å utføre ulike handlinger som å løfte armen, eller å blunke, og gi pasienten en skåre basert på hvor mange av disse handlingene pasienten gjennomfører. Den andre tilnærmingen er å måle de elektriske utslagene fra hjerneaktiviteten. En mener at bestemte mønstre i hyppigheten og styrken på dette signalet kan vise om pasienten er bevisst på sine omgivelser, selv om de ikke kan si noe eller bevege seg. En tredje tilnærming er å måle hvilke deler av hjernen som aktiveres når en blir bedt om å tenke på noe spesielt. Om de samme områdene aktiveres som hos friske, kan dette tyde på at instruksjonen blir forstått og fulgt. Den siste tilnærmingen er å se på hvilke forbindelser som finnes i hjernen. Dette skyldes at en antar at ulike deler av hjernen må samarbeide for å skape oppmerksomhet.

Da vi oppsummerte og sammenlignet disse ulike tilnærmingene, så vi at flere av de nye metodene som har kommet til de siste tiårene viser lovende funn, og kan bli viktige for fremtidig vurdering av bevissthet. Foreløpig er imidlertid disse nye tilnærmingene for ferske, uetablerte og uavklarte. Enn så lenge er det kun systematisk bruk av sjekklister for handlinger som er etablerte nok til bruk på sykehus.

Friday, 28 November 2014

Lecture on cognitive factors in operative environments

Below is the presentation from the third lecture in the Operational psychology master's course (in Norwegian). The lecture covers dynamic decision environments, mental models, decision-making, naturalistic decision-making, situation awareness, team decision-making, shared mental models, team cognition, team situation awareness, and finally gave examples from my own research.

Introductory lecture to operational psychology master course

In the spring semester of 2014, we started offering a master's course in Operational psychology. I was responsible for the course, but used extensive guest lecturers, where experts in each respective field was asked to cover a topic. The course topics were:

  1. Introduction to the field of Human Factors (me)
  2. Operative cooperation, leadership and communication (Roar Espevik)
  3. Cognitive processes in operative settings (me)
  4. Individual differences in operative situations (Paul Bartone)
  5. Care of personnel after critical incidents (Jarle Eid)
  6. Human error and accident causes (Kathryn Mearns)
Below is my introductory lecture (in Norwegian). The lecture localized the field of Human Factors within the rest of psychology, and discussed it's history, topics, methods, and gave samples from research and application (including an overview of our research group).

Monday, 24 November 2014

Paper introducing the methodology of the similarity index in field studies

Early in my post-doc project, our research group was contacted by an emergency control centre in a major oil company. The centre handles incidents on offshore oil and gas rigs, events like fires or gas leaks, heavy weather or ships on collision course. The centre's task is to construct a coherent image of the emergency based on the incoming information, and to advise and organize the different resources involved in handling the emergency. The centre wanted our help to identify areas for further improving their emergency handling.

My initial approach to the request was to develop measures for individual and team mental representation. That is, does each team member have a good idea of what's going on at the oil rig, and does the team as a whole have a good idea of this? However, it quickly became apparent that since both actual events and training exercises in this setting are non-transparent, dynamic and interactive, it would be challenging to establish a ground truth for what the different team members should be expected to know at different times through an exercise.

We arranged a series of unstructured and semistructured training exercises for all the emergency teams in the organization. At planned intervals we "froze" the exercise, and had all team members answer questions about the situation and the team's work. But the challenge remained of how to assess the responses of these questions. The experts were reluctant to say that a given team member should hold a given bit of information about the situation at a given point in time.

The solution I chose was to compare the answers between the team members. I developed two algorithms that were applicable to all the questions. The first of these returned a value from 0 to 1, indicating how similar your answer was to the rest of the team. The second returned a value from 0 to 1, indicating how similar your answer was to the team leader. I argued that the first calculation should approach a measure of shared mental models, that is, the extent to which the team member had the same representation of the incident as the rest of the team. The second calculation should approach a measure of situation awareness, as a higher score should be associated with more accurate knowledge, given the assumption that the team leader was the best informed member of the team.

As this was a fairly (though not completely) novel methodological approach, before going any further we published a paper that went into some detail on describing the measures and the calculation of the scores. This was published in Journal of Cognitive Engineering and Decision Making: The similarity index as an indicator of SMM and SA in field studies. This paper did not test any research hypotheses, as this was reserved for future papers.

Tuesday, 4 November 2014

Who is "the brain"? (previously published as a newspaper feature in Norwegian)

Hvem er egentlig denne “hjernen”?

To saker i nyhetsbildet tyder på at det er fristende for oss å tenke på hjernen som noe vi har, heller enn noe vi er. I hvilke situasjoner er det nyttig å studere hjernen direkte, heller enn å studere atferden som hjernen produserer?


Illustrasjon av Flickr-bruker J E Theriot, gjort tilgjengelig med Creative Commons lisens Navngivelse 2.0 Generisk.

Vi ser ofte overskrifter som “Traumer kan endre hjernen” eller “Slik kan dataspill trene hjernen”. Men hvem er egentlig denne “hjernen”? Vel, det er jo oss selv, selvsagt. Du er hjernen din, og hjernen din er deg.

Riktignok mente Descartes at “sjelen” var noe annet enn “kroppen” (altså en dualisme), men dette synet er forlengst forkastet, og all moderne vitenskap og medisin jobber ut fra forutsetningen at hjernen skaper vår opplevelse (en monisme). Derfor oppfatter vi verden ulikt om hjernen påvirkes av skader, medisiner eller forgiftning, og når vi tenker på noe eller føler noe kan vi måle det som endret aktivitet i hjernen. Så når vi endrer oss, er det hjernen som endrer seg. Når mediene velger overskrifter som de nevnt over, må dette skyldes at vi fortsatt tenker på personen som noe annet enn kroppen, selv om vi egentlig vet bedre.

Den tyske professoren Manfred Spitzer skal på fredag 7. november delta på et seminar som i BT ble presentert med undertittelen “en tysk hjerneforsker er på vei til Bergen for å skape dårlig stemning”. Anledningen er promoteringen av Spitzers nyoversatte bok  “Digital demens”. Budskapet hans synes å være at bruken av digitale verktøy endrer de unges hjerne på en måte som er uheldig for læring. Den tyske utgaven av boken fikk i sin tid hard medfart i tyske aviser. De siste dagene har også norske forskere som Fjell og Moser tatt til motmæle mot Spitzers bombastiske påstander.

Det høres rimelig ut at ukritisk bruk av PC og nettbrett på skolen kan være uheldig. Men hvorfor legges det vekt på Spitzers bakgrunn som psykiater og hjerneforsker, og at han mener at bruk av digitale verktøy endrer hjernen? Vi får anta at dette fokuset er valgt fordi det skal gjøre budskapet tydeligere, eller kanskje mer skremmende, enn om han bare hadde sagt at de unges læring blir påvirket. Siden all erfaring endrer hjernen, har Spitzer rett når han sier at hjernen endres av å stirre på en skjerm i fire timer, men det samme kan sies om en heller leser bøker, kjører bil eller står på ski.

Et annet eksempel på at det faller naturlig for oss å skille mellom hjernen og personen, er medieomtalen av en fersk forskningsartikkel fra Bergen. Bakgrunnen er et prisverdig samarbeid mellom tre forskere fra The Choice Lab, NHH, og tre forskere fra Institutt for biologisk og medisinsk psykologi, UiB (for ordens skyld: sistnevnte er mitt tidligere fagmiljø). Det har de siste tiårene blitt vist at de tidligere økonomiske teoriene ikke alene kan forklare hvordan mennesker gjør valg. Når forsøkspersoner tar beslutninger i eksperimenter gjør de ikke alltid det de ville tjent mest på, men er villige til å dele med andre, og er straffende mot de som tar seg til rette. Vi kan forsøke å spørre forsøkspersonene om hvorfor de velger slik, men det er ikke sikkert at de er helt ærlige eller at de forstår valgene sine helt selv.

I slike problemstillinger kan hjerneforskning være nyttig, og det er en slikt “nevro-økonomisk” studie forskerne i Bergen har samarbeidet om. De har studert hvilken del av hjernen som er involvert når en vurderer ulike fordelinger av utbytte mellom to personer. “Hjernen er streng men rettferdig” kunne BT melde. Men er det ikke vi selv som er strenge og rettferdige, heller enn hjernen? Når vi bedømmer ulike fordelinger av goder, så kommer denne bedømmelsen fra hjernen. Og med en tilstrekkelig nøyaktig metode, bør en forvente å finne at hjernen oppfører seg forskjellig når vi bedømmer forskjellig.

Så hvorfor skal vi bruke mye ressurser på å gjøre hjerneavbildning i slike eksperimenter? Svaret på dette er nevnt i siste setning av artikkelen. Her sies det at funnene tyder på at holdning til fordeling av goder bygger på hjernens belønnings-system. Dette tyder på at avvikene i økonomiske valg ikke skyldes tillærte regler, sosial tilhørighet eller lignende, men en mer grunnleggende preferanse for rettferdighet.

Som vi har sett er det fristende å legge vekt på endringer i hjernen når en beskriver forskning på mennesker. Men det burde ikke overraske oss at barn som skiller seg i læringsevne, eller at fordelinger som vurderes ulikt, kan måles som forskjeller i hjernen. Derimot kan hjerneavbildning være nyttig for å forklare hvordan vi utfører en oppgave, og da kan vi finne ut hvilke mekanismer som ligger bak barns læring eller holdning til fordeling av goder.

Monday, 20 October 2014

Book chapter on situation awareness applied in maritime settings

In 2013, our research group "Operational psychology research group" and associated members collaborated on an edited book called "Motivating for safety". The book was intended for practitioners in the industry, in particular captains and safety officers in the maritime field. The book covered topics such as safety climate, sleep deprivation, shared mental models, situation awareness, leadership, psychological capital and hardiness. Each topic is illustrated with cases, exercises and training questions. My chapter on situation awareness is linked below.

Motivating for safety - Chapter 6 - Seeing, understanding, anticipating - Situation awareness as a requirement for safe voyages

Friday, 17 October 2014

Trial lecture on the psychology of risk

In the process of applying for a associate professor position in cognitive psychology, I was asked to deliver a lecture on my own research. Rather than talking about my previous research on the neurocognition of selective attention, I chose to focus the presentation around different research projects I've had on the topic of "risk".

I started out with an example I sometimes use in my lectures to demonstrate the various risks that are relevant to their age group in Norway. I then introduced some classic studies on risk, and some fundamental perspectives. I presented my recent series of Go/NoGo lab experiments intended to model risk perception. I then introduced "situation awareness" as an application of risk in real-word settings, and the related research projects I've run to attempt to approach it in surveys, lab and field experiments. Finally, I discussed some of the consequences of risk, showing how people's behaviour are sometimes changed after considering dangerous situations. Relevant to this, I presented three experiments done in collaboration with Hallgeir Sjåstad, where presenting a threat influenced how security policy was evaluated by a post-Utøya sample.

Trial lecture on "Human factors"

After applying for a position in work and organizational psychology, I was asked to give a trial lecture to the relevant faculty members. The prescribed topic was "Current perspectives in work and organizational psychology". Some of my research interests were in the field of "human factors", and as this topic was not well represented in the present teaching load of the department, my aim was to demonstrate what "human factors" is, and how it relates to other fields of psychology and should be considered a part of work and organizational psychology. I covered the field's history, some general themes, research approaches and applications.

Friday, 3 October 2014

Paper on assessment of conscious states


How can we tell whether an immobiised patient is conscious or not? This was the starting point for the master thesis of three clinical psychology students that I supervised. The students reviewed and provided a synthesis of the recent scientific literature on the subject. After the thesis work was over and the students had left the university for clinical positions, I collaborated with them to rewrite the work into a article intended for Norwegian clinicians.

Table 1:
STATE OF  CONSCIOUSNESSWAKEFULLNESSAWARENESSINTENTIONAL BEHAVIOUR
Normal awake stateYesYesYes
unresponsive wakefulness syndromeYesNoNo
Minimally conscious stateYesOccasionallySome
Locked-in-syndromeYesYesVery limited motor capacity
ComaNoNoNo

The paper gives a definition of consciousness and outlines the clinical disorders of consciousness (see table 1 above). We then categorise four different types of assessment of consciousness: behaviour checklists, electrophysiology, imaging of activation and imaging of networks. We discuss each approach's standing, merits and disadvantages (table 2). Finally we discuss to which extent the assessment approaches reflect the theoretical definition.

Table 2:
APPROACHTYPEEXAMPLESPRINCIPLEADVANTAGESDISADVATAGES
Behaviour checklistActive or passiveGCS-R, SMART, etc., see Seel et al. (2010) for reviewChecklist for whether actions occur, spontaneously or on instructionHas clinical standardUnable to capture consciousness that does not appear in the behavior
Electro-physiologyActive or passiveEEG, ERPElectrodes measure simultaneous fireing of groups of neuronsEquipment readily available can be used on all patients, also at bedsideHard to say where the signal comes from, hard to say which processing the response involves
Imaging of brain activityActivefMRI, PETImaging of the metabolism from activity in different parts of the brainGood localization of the signal, can determine whether a task activates the same areas as in healthy peopleExpensive and scarce equipment, cannot be applied to all patients. Measures the capacity for consciousness, but this capacity is not necessarily in use
Imaging of networksPassiveDefault mode network, DTIMeasures which parts of the brain that are connected, or that are activated simultaneouslyAs above, but does not require active participation from the patientAs above, but in addition it is unclear how the networks should be interpreted

As we wanted to inform Norwegian clinicians working in adjacent fields and next-of-kin to patients with consciousness afflictions, we wanted the paper to be easily accessible. We published in a peer-reviewed Norwegian online open-access journal (abstract in English)

Link to the publication in psykologisk.no (Scandinavian Psychologist).

Monday, 15 September 2014

The "updating" component of WM is differently involved in various noise conditions

Several years ago Patrik Sörqvist and I collected fMRI recordings of participants performing a working memory (WM) task, where WM content updating could be compared to WM maintenance. Soon thereafter we published a paper on the data from the pilot sample of eight participants performing the task in silence.

In addition to examining WM mechanisms, we also wanted to study how the WM functions in different auditory noise conditions. Therefore the majority of the participants performed the task while different noise conditions were played in the background. However, this was not part of our initial publication, and both Patrik and I got involved in other projects, preventing us from publishing on this aspect of the study until this year.

We found that the larger data set (from 18 participants) confirmed the main finding of the pilot study: that updating WM content activates areas mainly in dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes (shown in red in the animation below, t-values 7-16), while rejecting the input and not updating WM content activates the anterior medial frontal cortex (shown in blue). Comparing this to the similar contrast in our previous publication shows a very similar pattern, indicating a replication of the finding.



In order to address our second research question of how noise affects WM function, all participants performed the study in three different conditions: In silence, in aircraft noise and in speech noise. We wanted to see whether updating WM content in speech noise activated different cortical areas than updating in aircraft noise. As shown in the animation below (t-values 4-9), the prefrontal cortex is involved to a greater extent when updating in speech noise (shown in gold) than when updating in aircraft noise (shown in silver). This could indicate that speech noise is more intrusive on e.g. phonological loop processes, and requires deliberate processing to counteract.
The publication is currently in press at Scandinavian Journal of Psychology. You can find a pdf of the pre-print version of the paper here. The publication is currently in press at Scandinavian Journal of Psychology. You can find a pdf of the pre-print version of the paper here.


Tuesday, 5 August 2014

Presentation of field study for applied network (HFC forum)

I was invited to hold a presentation on my research at one of the meeting for Human Factors in Control, a national network for researchers, industry and consultants that are working with human factors. The presentation is fairly similar to the one I held at HFES in 2012, but somewhat updated and with some added details.

Monday, 14 July 2014

ERP paper on sequential effects of selective attention (Primed DL)

During my ambitious young PhD years in cognitive neuroscience I collected more data than I had time to publish on. For example, I equipped participants with 61 scalp electrodes and let them perform the "primed dichotic listening" experiment that I had developed. My previous studies had established a priming effect, and fMRI neuroimaging had indicated that cognitive control and inhibition may be involved in producing the effect. As ERP has a finer temporal resolution, this could be used to examine the time course of such an effect. Unfortunately, I didn't have time to analyse the data during my PhD time, so the data was left unused for several years. I later got in touch with René Huster whom I went to graduate school with, and we analysed the data together during a research visit to his research group in Oldenburg.

As before, in each trial of the experiment a single syllable was played followed by a dichotic syllable pair, and in some cases one of the syllables in the pair repeated the prime syllable. The trials were categorized based on whether the repeated syllable was selected or not, as shown in the figure below.
A strong behavioural effect was seen as in the previous studies. The ERP analysis was optimized to identify differences in the early attention processing (i.e. the N200s) between the different response categories. ERPs were extracted for three midline electrodes from four relevant time-windows and compared between the conditions using repeated measures ANOVA. Significant effects were seen in both the prime-related (left in the figure below) and in the dichotic target-related activity (right in the figure below). 



Trials where the participant reported the non-primed syllable (prime ignored trials) showed more negative ERPs at prime presentation, which may indicate inhibition of the prime representation. Trials where the participant reported the primed syllable (prime reported trials) showed more negative ERPs at target presentation, which may indicate cognitive conflict and effortful response selection. In reference to the theoretical framework presented previously, the data suggest that the interplay of a proactive inhibition bias (during prime presentation) and a reactive potential for conflict (during target presentation) is involved in causing the primed dichotic listening effect.

Sætrevik, Huster & Herrmann (2013) Proactive and reactive sequential effects on selective attention - Brain and Cognition

There is also a second data set, with EEG recorded from a larger data set doing a sequence of dichotic listening trials which we will hopefully go on to publish some day.

Monday, 3 February 2014

Theory of science lectures

During my post-doc years, I lectured in the topic of Theory of science (Norwegian: vitenskapsteori) for the first semester of psychology (spring and fall). This took the form of three two-hour lectures based on the textbook "How to think straight about psychology" by Keith E. Stanovich. In the presentation materials for the lectures, I proposed a mind map that the students were invited to structure their understanding around. Branches specific for the science of psychology were structured to the left, while less topic specific branches were on the right. the students appeared to respond well to the presentation materials.


Friday, 31 January 2014

Suggesting a context-general survey for situation awareness


One of the aims of my post-doc was to develop a measurement approach for situation awareness (SA) that could be applied across different settings, and can be used in large data collections. Endsley's theoretical model suggests that SA consists of three levels - perception, understanding and prediction, and should be measured with instruments adapted to the setting in question.

Based on a theoretical review, I developed and piloted an inventory of 13 items, which were then tested on a larger sample of 166 sailors. To test whether the inventory supported the theoretical model for SA, two different confirmatory factor analyses were run, one where all items were associated with a single factor, and one where the items were associated with three factors.  The three factor model showed a good fit with the response patterns.

Thus the approach appears psychometrically valid, although it remains to see whether it has any predictive value. Further, some researchers may be reluctant to measure SA in the same way across contexts. The article was published in a special issue of International Maritime Health.

Link to paper: Sætrevik, B. (2013). Developing a context-general self-report approach to measuring three-level situation awareness.